Augmented Pedagogy in Special Education: Integrating AI, Robotics, and Adaptive Technologies for Inclusive Learning
Spyridon Kontis1[0009-0009-7892-6966], Lambrini Seremeti2[0000-0002-0663-5408], and Sofia Anastasiadou1[0000-0001-6404-5003]
1 University of Western Macedonia, Greece,
2 Agricultural University of Athens, Greece,
dmw00034@uowm.gr,
lseremeti@aua.gr,
sanastasiadou@uowm.gr
DOI: 10.46793/eLearning2025.139K
Abstract. The rapid advancement of emerging educational technologies has opened new avenues for inclusion and innovation in special education. This paper presents findings from a mixed-methods study conducted in Cyprus, focusing on the integration of Artificial Intelligence (AI), educational robotics, virtual/augmented reality (VR/AR), and adaptive learning software in classroom environments supporting students with special educational needs (SEN). Drawing on both qualitative and quantitative data collected from over 120 participants, including teachers, parents, and learners, the research investigates the pedagogical impact, user acceptance, and challenges of deploying such technologies in real-world educational settings [1, 3].
Observational data and structured interviews highlight how these tools foster motivation, autonomy, and engagement, particularly among students with learning disabilities, autism spectrum conditions, or visual/hearing impairments. The study further identifies barriers such as lack of teacher training, infrastructural constraints, limited digital content in native languages, and the need for ethical considerations when implementing AI-driven tools [4–6]. To address these gaps, the paper proposes the “Assistive EdTech Adoption Framework”, a phased roadmap for schools aiming to deploy inclusive educational technologies aligned with the Universal Design for Learning (UDL) model [3, 10]. This framework emphasizes scalable implementation, interdisciplinary collaboration, and alignment with the European Digital Competence Framework (DigCompEdu). The paper concludes with policy and practice recommendations to enhance digital equity and empower teachers in the use of smart educational ecosystems [13], as illustrated in Figure 1.
Keywords: Special education, Artificial Intelligence, Educational robotics, VR/AR, Inclusive learning, Assistive technologies, DigCompEdu, Universal Design for Learning.
References
- Kontis, S. (2024). MSc Thesis: Integration of New Technologies in Special Education. Frederick University, Nicosia.
- European Commission. (2017). DigCompEdu: European Framework for the Digital Competence of Educators. Publications Office of the European Union, Luxembourg.
- UNESCO. (2022). AI and Inclusion in Education. UNESCO Publishing, Paris.
- Fung, K. Y. , Fung, K. C. , Lui, T. L. R. , et al. (2025). Exploring the impact of robot interaction on learning engagement: a comparative study of two multi-modal robots. Smart Learning Environments, 12, Article 12.
- CAST. Center for Applied Special Technology. (accessed: 11 Aug 2025)
- AEM Center. National Center on Accessible Educational Materials. (accessed: 11 Aug 2025)
- ISTE. International Society for Technology in Education. (accessed: 11 Aug 2025)
- Al-Azawei, A. , Serenelli, F. , Lundqvist, K. (2016). Universal Design for Learning (UDL): A content analysis of peer-reviewed journal papers from 2012 to 2015. Journal of the Scholarship of Teaching and Learning, 16(3), 39–56.
- Anastasiadou, S. D. (2026). Exploring AI ethics through factorial correspondence analysis. In S. Anastasiadou, T. Chadjipadelis, N. Koutsoupias, A. Markos, & G. Menexes (Eds. ), Modern International Developments in Data Analysis and Multivariate Statistical Analysis (pp. 495–528). IGI Global Scientific Publishing.
- Seremeti, L. , Anastasiadou, S. , Masouras, A. , Papalexandris, S. (2025). Addressing the challenges of harmonizing law and artificial intelligence technology in modern society IAES International Journal of Artificial Intelligence (IJ-AI), 14(3), 2471–2478. https://doi. org/10. 11591/ijai. v14. i5. pp2471-2478
- Seremeti, L. , Anastasiadou, S. (2025). Dealing with semantic inconsistencies in AI governance. In S. Anastasiadou, L. Seremeti, A. Masouras, & L. Anastasiadis (Eds. ), Modern Perspectives on Artificial Intelligence and Law (pp. 125–134). IGI Global Scientific Publishing.
- Anastasiadou, S. , Seremeti, L. (2025). Autopoietic co-evolution of AI and law. In S. Anastasiadou, L. Seremeti, A. Masouras, & L. Anastasiadis (Eds. ), Modern Perspectives on Artificial Intelligence and Law (pp. 81–88). IGI Global Scientific Publishing.
- Kalogera, C. , Seremeti, L. , Kontis, S. , Anastasiadou, S. (2025). The digital DNA of modern workforce. In L. Seremeti, P. Liargovas, L. Anastasiadis, & S. Anastasiadou (Eds. ), Harnessing Business Intelligence for Modern Talent Management (pp. 379–390). IGI Global.
- Kontis, S. , Anastasiadou, S. , Anastasiadis, L. , Seremeti, L. (2025). Legal entropy in AI governance. In S. Anastasiadou, L. Seremeti, A. Masouras, & L. Anastasiadis (Eds. ), Modern Perspectives on Artificial Intelligence and Law (pp. 193–206). IGI Global Scientific Publishing.
- Rose, D. H. , Meyer, A. (2006). A Practical Reader in Universal Design for Learning. Harvard Education Press, Cambridge.
- World Health Organization. (2011). World Report on Disability. WHO Press, Geneva.
- Zydney, J. M. , Bathke, K. , Hasselbring, T. (2014). Developing technological pedagogical content knowledge (TPACK) of pre-service teachers for inclusive education. Journal of Special Education Technology, 29(2), 1–12.
- Agorogianni, A. Z. , Zaharis, Z. D. , Anastasiadou, S. D. , Goudos, S. K. (2011). Distance learning technology and service support in Greece: the case study of the Aristotle University over the last decade. Education and Information Technologies, 16(1), 25–39.
- Seremeti, L. , Anastasiadis, L. , Anastasiadou, S. (2024). The role of data in environmental, social, and governance strategy. In C. Papademetriou, S. Anastasiadou, K. Ragazou, A. Garefalakis, & S. Papalexandris (Eds. ), ESG and Total Quality Management in Human Resources (pp. 201–218). IGI Global Scientific Publishing.
- Souravlas, S. , Anastasiadou, S. (2021). Pipelined dynamic scheduling of big data streams. Applied Sciences, 10(14), 4796.
- Souravlas, S. , Anastasiadou, S. (2022). On implementing social community clouds based on Markov models. IEEE Transactions on Computational Social Systems. https://doi. org/10. 1109/TCSS. 2022. 3213273
- Souravlas, S. , Anastasiadou, S. , Katsavounis, S. (2021a). More on pipelined dynamic scheduling of big data streams. Applied Sciences, 11(1), 61.
- Souravlas, S. , Anastasiadou, S. , Katsavounis, S. (2021b). A survey on the recent advances of deep community detection. Applied Sciences, 11(16), 7179.
- Tantalaki, N. , Souravlas, S. , Roumeliotis, M. , Katsavounis, S. (2020). Pipeline-based linear scheduling of big data streams in the cloud. IEEE Access, 8, 117182–117202. https://doi. org/10. 1109/ACCESS. 2020. 3004612
- Souravlas, S. , Katsavounis, S. , Anastasiadou, S. (2021c). On modeling and simulation of resource allocation policies in cloud computing using colored Petri nets. Applied Sciences, 10(16), 5644.
- Souravlas, S. , Anastasiadou, S. , Tantalaki, N. , Katsavounis, S. (2022). A fair, dynamic load balanced task distribution strategy for heterogeneous cloud platforms based on Markov process modeling. IEEE Access, 10, 26149–26162.
- Souravlas, S. , Anastasiadou, S. , Kostoglou, I. (2023a). A novel method for general hierarchical system modeling via colored Petri nets based on transition extractions from real data sets. Applied Sciences, 13, 339.
- Souravlas, S. , Anastasiadou, S. , Economides, T. , Katsavounis, S. (2023b). Probabilistic community detection in social networks. IEEE Access, 11, 25629–25641. https://doi. org/10. 1109/ACCESS. 2023. 3257021
Izvor: Proceedings of the 16th International Conference on e-Learning (ELEARNING2025)
