

137

The Third International Conference on e-Learning (eLearning-2012), 27-

28 September 2012, Belgrade, Serbia

E-LAB: WEB BASED SYSTEM FOR AUTOMATIC ASSESSMENT OF PROGRAMMING

PROBLEMS

TOMCHE DELEV

Faculty of Computer Science and Engineering – Skopje, tdelev@finki.ukim.mk

DEJAN GJORGJEVIKJ

Faculty of Computer Science and Engineering – Skopje, dejan.gjorgjevikj@finki.ukim.mk

Abstract: E-Lab is a system developed at Faculty of Computer Science and Engineering for solving and auto-grading

programming problems from introduction level programming courses. The main goal is to simplify and improve the

organization and process of solving programming problems from large group of students in dedicated computer labs

using centralized server. All the work from the students is done in a web browser using a web-based code editor and

everything is stored, compiled and executed on the server. The system keeps records of all problem attempts from

identified students which are used as attendance records. All the problems and solutions are under version control

system (Git). The platform supports different types of problems in several programming languages (C, C++, Java) and

it's designed to be easily extended.

Keywords: Online submission, programming languages, automated assessment

1. INTRODUCTION

Programming is one of the essential practical skills taught

at introduction level courses in computer science

curriculums. Mastering this skill can improve students'

chances in finding fair job and developing successful

career. The rewarding career and the constant raising of

the market for programmers, makes the computer science

programs very popular among high school students. This,

results in larger number of students at the introductory

classes with several hundred students enrolled.

Programming is not an easy skill to develop. By some

studies [1], mastering this skill requires up to ten years.

As easy as it seems, teaching basic programming raises

challenges to the academic stuff and good organisation

with the right tools is required to tackle these challenges.

Similarly to other practical skills, good strategy for

learning programming involves great amount of time

actually doing it. For introduction level courses involving

some kind of programming, this translates to solving a lot

of basic algorithmic examples. To incorporate this

practice in the courses, the students organized in smaller

groups are required to spend considerable amount of time

solving this kind of programming problems organized in

problem sets by the topic and held in dedicated computer

labs.

Several hundred students working on a set of problems

every week, produces thousands attempted solutions in

form of source code that should be examined and graded.

In the current environment students work on PC

workstations using simple text editor or some kind of IDE

for the programming language they use. They save,

compile and execute the solutions on their local machines.

After they finish, no records of their work is stored on

server repository, so there is no possibility for the

instructors to examine and grade their solutions

afterwards. The time limit for each group of students is in

the range of 90 to 120 minutes, and the instructors usually

have only up to 30 minutes to examine, test and grade all

the students of the group assigned to them (the group they

are tutoring) which is usually around 20, each with

solutions for several problems. These settings makes

almost impossible for the instructors to quality assess the

students work, or if possible makes it a very dubious task.

The nature of the programming problems in great part of

the introduction programming courses is algorithmic. This

makes it possible to develop a fairly simple platform for

creating problems, test cases and system for automatic

assessment and grading the solutions. Most algorithmic

problems can be designed to take some input from the

standard input in some prescribed format, apply some

simple algorithm, and finally produce an output in some

prescribed format and print it on the standard output.

Having this kind of problems we can take the executable

of the program, feed the test input and then compare and

verify for correctness on the test output. This process

which is widely used in many competitive programming

systems should emphasize the importance in

programming to have a working solution, instead of only

writing a code that some times doesn't compile.

The E-Lab system is developed with several goals. If the

first goal was to improve the organization and

implementation of the programming exercises, other

important goals are the motivation of the students and the

continuous feedback they will have using this platform.

With E-Lab we want to shift the role of the instructors

from teachers and graders to motivators, which are shown

to give better effects in teaching programming [2].

138

2. RELATED WORK

Systems that automatically assess programming

assignments have been designed and used for more than

forty years. In [3] authors review a number of the

influential systems for automatic test-based assessment of

programming assignments. These systems are broadly

categorized according to age in three generations.

The first generation or early assessment systems were

those originating from the time when programming was

done using punch cards and the evaluation was done by

executing programs and manually evaluating the output.

Some of these early systems had specially designed

programs to compare the output of the execution to some

predefined output.

The second generation or the tool oriented assessment

systems are developed using pre-existing tool sets and

utilities supplied with the operating system or

programming environment. One notable example of these

systems is the BOSS system originated at the University

of Warwick in the UK [4] which, in his last development

cycles, has become an assessment management system.

Other example is the Scheme-Robo project [5] which has

been supplemented by a graphical user interface and an

algorithm-animation component.

The third-generation assessment systems are

characterized by using the latest developments in web

technology and adopt advanced testing approaches.

Previously mentioned system BOSS has evolved in this

generation. CourseMarker, developed at Nottingham

University [6] and RoboProf deployed at Dublin City

University [7] are examples of this last generation of

automatic assessment systems.

3. THE E-LAB PHILOSOPHY

We developed E-Lab with the idea that we should build it

using the latest web technologies and state of the art tools

that have been proven to work over the years. The result

is a possible forth generation system, where we integrate

latest technologies to produce modern, extendable,

scalable and easy to use platform. We achieve this using

the experience over the years observing students working

on programming problems in introduction level courses.

Integrated problem view

Most of the time available to students trying to solve the

problems in the dedicated computer labs is (or should be)

spent in three equally important phases. In the first phase

students should carefully read and understand the

problems, the second phase should be part in which they

can refer to the related course material actually attempting

to solve the problem resulting in coding the solution in

some programming language, and in the third and final

phase they should get the feedback for the correctness of

their solution.

Image1: The student screen trying to solve a problem.

According to this observation, the platform was designed

in such a manner, so that on a single screen students can

work and accomplish all the phases involved in solving

the problems. As can be seen on figure 1, on that single

screen we have the problem text to be read, the web-based

code editor to write the solution and the actions pane, so

they can run their solution and get instant feedback in the

output area. With this design we try to implement the

extreme apprenticeship method [8] which is based on a

set of values and practices that emphasize learning by

doing, together with continuous feedback as the most

efficient means for learning programming.

Authentication

All users of the system are authenticated using the Central

Authentication System (CAS) which is used by all

services at the faculty. With this mechanism we can

identify students and their solutions, and later use this

identity to export attendance and score records or check

for plagiarism, malicious code or other abusive usages.

Problems design

The central entities in the programming exercises are the

programming problems. Each problem is designed in two

phases. In the first phase we define the problem text,

name and in some problems provide starter code. This

information define only the basis of the problem, so in the

second phase we need to provide sample input and output

for the problem as an example, and at least one test case,

also in form of input and output data, so the solutions of

the problem can be tested. For each problem, we can also

add contextual help or hints that can be helpful for

students to solve the problem.

Automatic assessment

Having limited resources in time and the identified

difficulties that tutors and instructors have trying to assess

all of the student solutions to the given problems makes

the automatic assessment top priority in the platform.

Since the platform covers only introduction level courses

in programming and algorithms, most of the problems can

be designed so they can be assessed by simple black-box

testing methodology. For each problem assignment the

author provides a reference solution, and using this

solution the system automatically generates test cases.

139

Each test case consists of simple input and output text

files. When the system tests the solution, if it's compiled

successfully, the executable is fed with the input file and

to be correct it should print out the same output as the

contents in the generated output file. One of the test cases

is a sample and is visible for the students, so they can

better understand the problem. In our implementation,

each problem should have at least one test case and up to

ten test cases. This shouldn't be taken as a general rule, be

our choice to limit the number of test cases, was to be

able to provide instant feedback. If we have more test

cases, then if their execution always results in time out

(the program doesn't end in a limited time), the user will

need to wait this time out period times the number of test

cases.

4. ARCHITECTURE

The overview of the system architecture can be seen on

figure 2, showing its primary components. The data

repository is the most interesting component of the

system. We propose a specific way of storing the

problems and all the work from the students by using a

combination of database and file system. All the relational

data and metadata of the problems such as the name, the

problem set it belongs, the text, are stored in relational

database. The other part containing the starter code,

reference solution, help contents in mark-up text and all

the test cases in form of input and output text files are

stored on the file system. And finally, all of the students'

solutions are stored solely on the file system in organized

directory structure.

Image 2: The E-Lab architecture.

Problems and solutions repository

Almost all of the problems information and solutions are

in form of simple text or source code files. Very practical

way of storing this kind of data is using some kind of

version control system. With this system we get features

such as management of the changes of the documents and

full revision tracking capabilities. The choice of Git,

which is very fast distributed revision control system,

gives the system the reliability of the distributed

repositories that doesn't depend on single server.

The client-server

The system is a form of standard client-server web

architecture. This architecture allows the client, which is

standard and web browser available on all platforms, to

run on virtually every PC in our computer lab

environment. This lowers the costs of maintenance of the

computer labs, because no specific software such as

separate client software, compilers, IDEs or text editors

should be installed and maintained.

The web server is composed of two separate servers. The

front-end web server is a fast web server that serves as a

fast proxy and load balancer to the application server. The

application server is Java server that uses a scalable

RESTfull architecture. The web application on this server

follows the MVC architectural pattern applied to the web

architecture. The authentication of the users is done on a

central authentication server using HTTPS.

Asynchronous jobs

In our architecture as in most web based architectures, the

web application server is intended to work with very short

requests. It uses a fixed thread pool to process requests

queued by the HTTP connector. To get optimum results,

the thread pool should be as small as possible. The typical

optimum value for the default pool size is the number of

processors + 1.

That means that if a request is very long, such as waiting

the execution of a program that times out (for example 3

seconds), will block the thread pool and penalize the

application responsiveness. Of course, we could add more

threads to the pool, but it will result in wasted resources,

and anyway the pool size will never be infinite.

In the example when users submitting solutions that

should be tested on 3 test cases and each of these

solutions times out (3 seconds), then the request will last

at least 9 seconds (3 test cases x 3 seconds each). When

10 users simultaneously try to submit their solutions, the

server will need at least 10 execution threads. This

number is feasible, but if we want to have scalable system

that supports hundreds or more users submitting

solutions, we need different approach.

In these cases, our web framework allows us to

temporarily suspend the request. The HTTP request will

stay connected, but the request execution will be popped

out of the thread pool and tried again later. We execute

our long lasting operations such as compiling, saving and

executing in an asynchronous way. We use for execution,

something called asynchronous job, and while these jobs

are executing, the HTTP request is suspended and waits

for the result to be available. When the jobs are done with

the execution the HTTP request resumes and returns the

result to the user.

Sandboxed execution

The system allows students to write, run and execute any

kind of program code that will be executed on a remote

140

server. This can harm the server in many undesirable

ways. The malicious code can contain unprivileged read

and write access, can create fork bombs, allocate all the

available memory or simply consume all the processing

power the server has. To control or prevent these security

issues all the execution is done in a “sandbox”

environment. In this sandbox each execution is limited by

processing time and memory, and also constrained in the

number of processes it can fork.

Detecting plagiarism

Source code plagiarism is a serious problem and we must

make it very clear to students that the automated system

will not be tolerating any kind of source code plagiarism.

The large number of submissions makes it very difficult

to manually check for evidences of plagiarism in all

possible combinations of solutions. We must use some

automatic system for plagiarism detection. Automatic

plagiarism detection has been the subject of many studies

[9], [10] and there are many systems available online.

In the E-Lab system we incorporate one of these systems

trying to prevent and detect plagiarism cases. We use the

MOSS system developed by Alex Aiken at UC Berkeley

[11]. The “Measure Of Software Similarity” system

makes it possible to objectively and automatically check

all problem solutions for evidence of plagiarism or simple

copying. MOSS works with programming languages like

C, C++, Java, Python and many others. The strategy in

our system is to present it very clear to the students, that

their solutions will be checked for plagiarism against all

solutions submitted by other students. Some of the

introduction level problems have very short and simple

solutions. We exclude these submissions from plagiarism

detection, because the nature of these problems makes it

very difficult to write conceptually different solutions.

5. CONCLUSION

With the development and introduction of the E-Lab

system we try to address many organizational aspects of

the lab exercises from introduction level programming

courses at our faculty. We try to simplify and improve the

process of creating and managing simple programming

problems. The system is focused on the student and his

work and the role of the instructors is to motivate and

help students to write working solutions for most of the

problems.

The implementation of the central and reliable data

repository should also bring many advantages. It contains

all students’ solutions and other important information

such as the time when problems were solved or time

needed to solve. All the solutions are version controlled,

so we can track and analyze the stages in solving and

fixing bugs from beginner programmer perspective. All

these records, provides us with valuable information from

the learning process of the students. From this data, very

easy we can extract information such as students’

attendance records and final scores.

With this system, we are not trying to solve all the

organizational and educational problems or entirely

exclude the human factor. E-Lab is developed to help

with these problems and create modern environment that

will motivate and support students work in programming.

LITERATURE

[1] Winslow, L.: Programming pedagogy-a

psychological overview. ACM SIGCSE Bulletin

28(3), 17-22 (1996).

[2] Jenkins, T.: Teaching programming{a journey from

teacher to motivator (2001).

[3] Douce, C., Livingstone, D., Orwell, J.: Automatic

test-based assessment of programming: A review.

Journal on Educational Resources in Computing

(JERIC) 5(3), 4 (2005)

[4] Joy, M., Griffiths, N., Boyatt, R.: The boss online

submission and assessment system. Journal on

Educational Resources in Computing (JERIC) 5(3), 2

(2005)

[5] Saikkonen, R., Malmi, L., Korhonen, A.: Fully

automatic assessment of programming exercises. In:

ACM SIGCSE Bulletin. vol. 33, pp. 133-136. ACM

(2001)

[6] Higgins, C., Hegazy, T., Symeonidis, P., Tsintsifas,

A.: The coursemarker cba system: Improvements

over ceilidh. Education and Information

Technologies 8(3), 287{304 (2003)

[7] Daly, C., Horgan, J.: An automated learning system

for java programming. Education, IEEE Transactions

on 47(1), 10-17 (2004)

[8] Vihavainen, A., Paksula, M., Luukkainen, M.:

Extreme apprenticeship method in teaching

programming for beginners. In: Proceedings of the

42nd ACM technical symposium on Computer

science education. pp. 93-98. ACM (2011)

[9] Baker, B.: On Fnding duplication and near-

duplication in large software systems. In: Reverse

Engineering, 1995., Proceedings of 2nd Working

Conference on. pp. 86-95. IEEE (1995)

[10] Clough, P.: Plagiarism in natural and programming

languages: an overview of current tools and

technologies

[11] Aiken, A., et al.: Moss: A system for detecting

software plagiarism. University of

California{Berkeley. See www. cs. berkeley.

edu/aiken/moss. html (2005)

